
IEEE Network • March/April 2020232 0890-8044/20/$25.00 © 2020 IEEE

Abstract
Congestion control is always an active

research field for guaranteeing the Quality of
Services (QoS) of datacenter networks (DCNs).
However, the current end-to-end TCP design
enables both senders and receivers not to directly
and precisely obtain the congestion information,
incurring inaccurate or non-real-time adjustments.
Moreover, switches that act as fundamental prim-
itives in DCN are usually used for reactive con-
gestion feedbacks (e.g., Ack and ECN), leading to
underused for proactive congestion control. In this
article, we propose a novel active queue manage-
ment (AQM) scheme called Active Buffer Queue-
ing (ABQ) which leverages active buffer queueing
of DCN switches to achieve both high-through-
put and loss-free transmissions. When the traffic
pattern in DCN is changed intensely in flow size,
number and interval, the feedback information to
TCP end hosts are imprecise. Unlike other AQMs,
the key idea of ABQ is to adjust the flow rate (or
packet pace) directly in the switch according to
the real-time congestion state. We explain the
design rationale behind ABQ and present simula-
tion results of its performance. Finally, we discuss
the implementation on the NetFPGA.

Introduction
In this article, we design a novel Active Queue
Management (AQM) scheme called Active Buf-
fer Queueing (ABQ) that employs active buffer
queueing for congestion control with the follow-
ing key properties:
•	 Keep buffer small: It attempts to match send-

er rates to network capacity while keeping
buffers small, regardless of the number of
senders.

•	 Proactive queueing: Switches can proactively
buffer packets according to congestion state
in order to adjust flow rate (or packet pace).
The first feature implies that, like all AQM

schemes, high utilization is not achieved by keep-
ing large backlogs in the network, but by feeding
back the right information for users to set their
rates. We present simulation results which demon-
strate that ABQ can maintain high utilization
with negligible loss or queuing delay as the load
increases.

The second feature is essential for ABQ
in DCNs where the traffic pattern is changed
intensely in flow size, number and interval. The
second feature is the fundamental difference

between ABQ and other AQMs. Most schemes
simply emphasize how to mark explicit conges-
tion notification (ECN) better, but ABQ tries to
enable the switch buffer packets to change the
flow rate (or packet pace).

In the following, we describe ABQ and explain
why it works effectively in DCNs. It will become
clear that these features are really useful in DCNs
when we present its mechanisms. ABQ can be
implemented in real switches. We then compare
the performance of ABQ with that of DropTail
and ECN in DCNs through simulations. Drop-
Tail is with the TCP sender, ECN and ABQ are
with the DCTCP sender. From our experiment,
we find TCP and DCTCP still drop packets, mak-
ing retransmission timeout (RTO) frequently. We
explain how ABQ can help address this problem
and present simulation results of its performance.

The primary intention of ABQ is that conges-
tion should be mitigated where it happens. Cur-
rent switches do not support proactive queueing.
ABQ makes a small change in switches and can
relieve congestion a lot. To the best of our knowl-
edge, the proposed ABQ in this article is the first
scheme that uses switches to adjust flow rate (or
packet pace). We implement an ABQ prototype
using NetFPGA, demonstrating novel insights for
congestion control in both industry and academia.

Our contributions include three aspects listed
as follows:
•	 We have developed Active Buffer Queue-

ing (ABQ) in congestion control for DCNs,
which enables switches to adjust the flow
rate directly for congestion control.

•	 We have used NS3 (Network Simulation 3)
to simulate an ABQ prototype and NetFPGA
1G to implement an ABQ prototype. The
NS3 C++ codes of an ABQ prototype are
available online at https://github.com/initus-
er/scc.

•	 We have evaluated the effectiveness of ABQ
for relieving congestions. In our congestion
evaluations compared with Droptail (with
TCP) and ECN (with DCTCP), ABQ shows a
50 percent less mean size of output queue,
four times fewer packet drops, and approxi-
mately 10 percent more goodput.

Background
A modern datacenter network has been an
important infrastructure around the globe. Driv-
en by novel cloud computing and data storage
applications [1], a datacenter network (DCN) has

ABQ: Active Buffer Queueing in Datacenters
Lei Xu, Ke Xu, Tong Li, Kai Zheng, Meng Shen, Xiaojiang Du, and Xinle Du

ACCEPTED FROM OPEN CALL

Digital Object Identifier:
10.1109/MNET.001.1900266

Lei Xu is with Tsinghua University and ArxanChain; Ke Xu and Xinle Du (corresponding authors) are with Tsinghua University and
Beijing National Research Center for Information Science and Technology; Tong Li and Kai Zheng are with Huawei;

Meng Shen is with Beijing Institute of Technology; Xiaojiang Du is with Temple University.

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on April 25,2021 at 02:03:38 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2020 233

a more explicit tree topology with higher through-
put and lower delay [2], compared with the local
area network (LAN).

Due to the topology and delay difference in
DCNs, traditional congestion control cannot han-
dle the congestion issues. Especially when many
flows are competing in the same bottleneck link,
the lower delay makes datacenter round trip time
(RTT) small, and the congestion control mechanism
will rapidly reduce the congestion window. After-
ward, while the switch queue overflows, multiple
fl ows will lose packets. Even worse, a certain fl ow
may lose packets in the entire window with the
small congestion window, which cannot trigger
TCP fast retransmission but trigger retransmission
time out (RTO), resulting in throughput decline.

Nowadays, the existing AQMs (e.g., RED [3],
REM [4]) try to use packet loss or ECN label as
congestion information. In a high-speed network,
packet loss cannot be used, because of easy-to-
lose packets and nonnegligible retransmission
delay. In contrast, ECN can well mitigate the
above mentioned delay, and it is widely used in
DCNs as the congestion feedback. Priority-based
Flow Control (PFC) [5] allows a switch to avoid
buffer overflow. PFC forces the upstream enti-
ty (either another switch or a host NIC) to sus-
pend data transmission. However, PFC operates
at port level and does not distinguish between
fl ows. This can cause congestion-spreading, which
leads to poor performance. Cutting Payload (CP)
drops packet payload at an overloaded switch to
inform the sender about the state more quickly
[6]. MQ-ECN [7] designs an eff ective solution to
mark the ECN flag for multi-service multi-queue
production DCNs.

Meanwhile, many other transport protocols
were also proposed with capabilities for conges-
tion mitigation. We classify the related literature
into two categories.

First, the traditional sender-driven protocols,
like DCTCP [8], DCQCN [9] and TIMELY [10].
Datacenter TCP (DCTCP) uses the ECN mecha-
nism to detect congestion degree. It suppresses
congestion by adjusting the congestion window
with the ECN mark. DCQCN is an end-to-end
congestion control scheme based on the Remote
Direct Memory Access (RDMA) protocol RoCEv2.
It uses QCN, PFC and SmartNIC to achieve high
throughput and ultra-low latency with low CPU
overhead. TIMELY adjusts transmission rates by
using RTT gradients to keep packet latency low
while delivering high throughput. All these works

adjust the rate on the sender. However, it is hard
for a sender to sense congestion accurately.
DCTCP’s one-bit ECN flag does not reflect con-
gestion in real-time. Although DCQCN is more
timely, it requires PFC and QCN to off er multi-bit
information. TIMELY can off er more information
by RTT, but it needs accurate measurement and is
easily aff ected by network instability.

Second, some protocols try to adjust the rate
at the receiver side, for example, ExpressPass
[11], NDP [12] and Homa [13]. ExpressPass is an
end-to-end credit-scheduled, delay-bounded con-
gestion control framework. It uses credit packets
to control congestion even before sending data
packets, which achieves bounded delay and fast
convergence. NDP and Homa use receiver-driv-
en scheduling and priorities to schedule packets
properly. They decouple the functions of adjust-
ing rate from the sender to solve last-hop switch
congestions.

Although these schemes can handle DCN con-
gestion issues to some extent, they do not take full
care of switches. Switches in a traditional wide area
network (WAN) are hard to replace, because of
the widely used TCP/IP. Instead, in DCN, it is feasi-
ble to change the design of the switch to enhance
transmission performance [12]. Later, we will
demonstrate our new AQM designed for DCNs.

motIvAtIon
In DCNs, a host can generate more than 1,000
concurrent connections [8]. On such a workload,
state of the art congestion control algorithms or
mechanisms such as TCP will experience incast
congestion. As shown in Fig. 1c, when conges-
tion occurs, the output queue of the bottleneck
switch, often the last hop switch, begins to build
up. Meanwhile, both the senders and the receiv-
ers are not aware of the congestion accurately
and promptly.

We use NS3 to conduct an 80-to-1 traffic pat-
tern to observe a congestion problem in the output
queue. The traffi c pattern is run with DropTail (with
TCP) and ECN (with DCTCP) respectively. Figure
1c illustrates the oscillation of output queue sizes
over the period from a fl ow’s start to its end.

From Fig. 1c, we find that the output queue
sizes sharply go up to its maximum and go down
quickly. The oscillation in output queue is unsta-
ble. The output queue always overflows. ECN
shows better than DropTail because its mecha-
nism informs the sender to decrease the conges-
tion window rather than drop packets, but ECN

FIGURE 1. The switch model and ABQ framework: a) the switch model; b) the ABQ framework in switch; c) the oscillation of output
queue and idleness of input queue.

Qin1

Qout1

Qin2

Qout2 Qout3

Switch

Data
packet

Ack
packet

Qin3Qin3

Sender1

Sender2
Reciver

Qout

Qin

Ack
Packet

Non-Ack
Packet

IsA
ck

IsA
ckSw

itch
Pipeline
Sw

itch
Pipeline

A
rbiter

A
rbiter

Port Interface
Port InterfaceABQ

Engine
Read status

Control

0.01 0.02 0.03 0.04 0.05
Time (S)

0

5

10

15

Q
ue

ue
 si

ze
 (1

0
K

B
) TCP Q out2 DCTCP Q out2 TCP Q in2

(a) (b) (c)

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on April 25,2021 at 02:03:38 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2020234

still cannot make the queue stable. Meanwhile,
Qin always maintains one Ack (Acknowledgment)
packet, as shown in the black ellipse in Fig. 1c,
because the input queue is used for time synchro-
nization rather than buffering. The input queues
are underused.

To explain the design, we use a simple switch
model as shown in Fig. 1a. The input queue is a
buffer queue locating in the entrance of packets,
for example, Qin1,2,3 in Fig. 1a. As mentioned ear-
lier, the input queues are underused. It can be
changed to use arbiters to buffer ACK packets
and are easy to obtain congestion state of the
switches. Accordingly, ABQ can be deployed in
the input queues to slow down the reverse flow.

The output queue is a buffer queue locating
in the exit of packets, for example, Qout1,2,3 in
Fig. 1a. ABQ cannot be deployed in the output
queues, because congestion always happens in
the output queues and if the output queues are
active buffering, the congestion will be more
severe. ABQ needs to be deployed where there
is not that much congestion, and active buffer will
make the flow slow down.

Hence we use the switches’ input queues to
build a mechanism that can react to congestion
proactively and accurately. It should keep the
output queue stable rather than overflow. We
propose ABQ, which proactively buffers packets
according to congestion state in order to adjust
the flow rate (or packets pace) to stable the rate
rather than only mark the congestion label.

In a word, the switch has two factors con-
tributing to ABQ for relieving congestion. First,
the switch is where congestion occurs, and it is
straightforward to access and utilize the conges-
tion state. Second, ABQ is deployed in the switch
input queue. It does not require modification on
output queue mechanisms and end host proto-
cols, which means ABQ can cooperate with other
AQMs at the same time.

Active Buffer Queueing (ABQ)
In this section, we will explain how ABQ works in
congestion and how to design ABQ. When there
is no congestion, senders send data packets to
receivers and receivers send Acknowledgment
(Ack) packets to senders. According to the Acks’
label or sequence number, senders adjust their

sending rate, like Fig 1a. When a switch output
queue is congested, the ABQ in the correspond-
ing input queue starts buffering incoming Ack
packets. Since the sender does not receive any
Acks, it will stop sending data packets, which alle-
viates congestion to some extent.

As shown in Fig. 1b, the ABQ framework con-
sists of several modules. IsAck is used to check
whether a packet is an Ack packet. Arbiter is used
to choose a packet and deliver it to switch pipe-
line, preventing collisions between two packets
from Qin and IsAck, respectively. The core module
ABQ-Engine includes two parts. The first is a queu-
ing discipline for input queue Qin. The second is
a congestion window corrector for setting ECE
(ECN-Echo) to the Ack header. Qout is the same
as the output queue of normal switches, and it
provides its real-time length to the ABQ-Engine.

Queuing Discipline
ABQ defines three congestion states: uncongest-
ed state (US), congested state (CS), and light
congested state (LCS). In different states, Qin has
different dequeuing disciplines.

Figure 2 illustrates the ABQ state machine.
There are two parameters used to determine the
current congestion state. The first is K, represent-
ing the threshold for Qout. The second is X, rep-
resenting the degree of congestion. The larger
the X, the more congested the network. Once
in congestion state (CS), X = min(Qmax – K, K).
In light congested state (LCS), when the length
of Qout decreases to X, X is halved, that is, X =
X/2. If X is less than the size of four maximum
transmission units (MTUs), X is set as zero, that is,
X = (X > 4MTU)?X: 0 and ABQ is in uncongested
state (US).

Enqueue Discipline: As described above,
ABQ input queue Qin always enqueues an Ack
packet if an Ack packet arrives at Qin. Hence, the
enqueuing discipline is the same as the enqueuing
discipline of the FIFO queue.

Dequeue Discipline:
•	 In US, Qin dequeues Ack packets as long as

Qin is not empty.
•	 In CS, Qin does not dequeue Ack packets.
•	 In LCS, including CS changing to LCS and LCS

changing to US, Qin dequeues Ack packets
once only when the length of Qout is X, then X
is halved which is explained in Fig. 2.
In LCS, Qin can choose different numbers

of Ack packets to dequeue. There is a trade-off
between congestion and link utilization. In this
article, we suggest that once dequeuing, Qin
dequeues all the Ack packets in it.

There are two reasons for dequeuing all Ack
packets. First, dequeuing fewer Ack packets
would lead to lower link utilization, especially for
light congested situations, where the delayed Ack
would increase flow completion time. Second,
to further relieve the congestion in Qout, ABQ
adopts a congestion window corrector to sup-
press the increment of the congestion window for
each connection.

Congestion Window Corrector
The queuing discipline in the above subsection
relieves Qout congestion initially. However, if the
sender receives Ack packets, it still increases its
congestion window dramatically according to

FIGURE 2. ABQ state machine.

US

US: Uncongested State
CS: Congested State
LCS: Light Congested State

LCS CS

State

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on April 25,2021 at 02:03:38 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2020 235

TCP additive increase and multiplicative decrease
algorithm, leading to congestion afterward. Hence
ABQ provides a congestion window corrector to
suppress the increment of the congestion window
when Qout is congested.

The corrector uses ECN-related mechanisms.
When ABQ is in LCS, the corrector would mark
congestion flag ECE to each Ack packet every
time Qin dequeues them. Once senders receive
the Ack packets marked with ECE, they will sup-
press window increment according to the ECN
mechanism.

It changes only one bit in the header and caus-
es one bit cost in the TCP header checksum. This
is because the checksum is the one’s complement
of the sum of 16 bit chunks. If one bit of ECE flag is
changed, the checksum can be directly calculated
by subtracting the fix value from old checksum.

Implementation and Evaluation
We implemented ABQ on NetFPGA 1G, as
shown in Fig. 3. On NetFPGA, ABQ is added as
Input Queue pipeline in front of User Data Path
pipelining. We plot the data path and the control
path which are important to the ABQ framework.

The Input Queues module has four data paths
corresponding to four switch interfaces. Mean-
while, there are feedbacks (Length) from the
Output Queues module to indicate how long
the output queue is. The following discusses the
details of each logic module in Input Queues.

The first logic module is IsAck as shown in Fig.
3. This module is used to check whether a packet
is an Ack packet, as described above. The second
and last logic module is Input Arbiter. This module
is to solve collision among four concurrent incom-
ing packets and choose one packet to send to the
following path.

The enqueuing discipline of ABQ is deployed
in Store Pkt. The Remove Pkt module is used to
get a packet from SRAM and send it out. If the
current input queue has Ack packets in SRAM, it
would send Rd Req to SRAM. Then SRAM returns
a packet to the corresponding FIFO.

We implement dequeuing discipline in the
Dequeue module shown in Algorithm 1, The algo-
rithm is implemented in an always statement of
Verilog Hardware Description Languages (HDL).

We use packet-level simulator NS3 to evaluate
the performance of ABQ. In this section, ABQ
works with senders deployed with DCTCP. In
NS3, the link delay is 40 ms and the bandwidth
is 1 Gb/s. The size of the switch output queue is
128 KB (i.e., 80 1500-B packets). The Retransmis-
sion TimeOut (i.e., RTOs

min for TCP sender) is set
to 10 ms, which is similar to the configuration in
[14]. The ECN marking threshold KECN is set to 40
packets for DCTCP. We set the parameters K of
ABQ to 20 packets. The KECN and K have different
limitations because they have different models for
steady-state behaviors.

Micro-Benchmark
We focus on the incast problem, in which many
concurrent senders start to transmit 32-KB flows
to one receiver at the 0.01th second. All the hosts
are under the same switch whose configurations
are described above. We increase the number
of concurrent senders from 10 to 100 to observe
the performance.

Queue Buildup and Input Queue Cost: We
measure the size of Qout and ABQ’s Qin in the
last-hop switch. In Fig. 4a, the red bar is the
length of the output queue and the purple bar
is the total length of the input queue and the
output queue. From Fig. 4a, the mean sizes of
DropTail (with TCP) and ECN (with DCTCP) are
1.5 and 1.6 times of that of ABQ, and the total
length of the input queue and the output queue
is close to the length of the output queue. ABQ
can make queues significantly shorter, with very
little buffer overhead. These observations reveal
that ABQ is effective to suppress switch con-
gestion.

Goodput and Packet Drops: In Fig. 4b, ABQ
maintains better goodput than DropTail and ECN,
while DropTail and ECN have goodput decreas-
es, revealing that they are impacted by incast.
ABQ has effective mechanisms to suppress con-
gestion, leading to better goodput. Sometimes
ABQ suppressed congestion radically so that the
goodput is also suppressed, for example, in 10,
20 and 70 senders scenarios. Note that ECN has
lower goodput than DropTail at 20 senders. This
is because ECN defers congestion to subsequent
rounds instead of eliminating them, resulting in
more packet-drops.

In Fig. 4c, ABQ drops a few packets in all the
incast scenarios. ECN drops fewer packets than
TCP due to the ECN mechanism. ABQ drops the
fewest packets in all the incast scenarios. The rea-
son is that ABQ has the smallest output queue
size among all the scenarios.

FIGURE 3. The NetFPGA implementation of ABQ.

In
pu

t
Qu

eu
es

In
pu

t
Ar

bi
te

r

Ou
tp

ut
 P

or
t

Lo
ok

up

Ou
tp

ut

Qu
eu

es

Data Path

Control PathLength

User Data Path

FI
FO

IsA
ck

FI
FO

IsA
ck

In
pu

t
Ar

bi
te

r

FI
FO

St
or

e
Pk

t
(E

nq
ue

ue
)

Re
m

ov
e

Pk
t

(D
eq

ue
ue

 &

Co
rre

ct
or

)

SRAM

12
3

4 1
2
3
4

Input
Arbiter

Input Queues (ABQ Parts））

Yes
No

ALGORITHM 1. Dequeue Logic.

Require: Num_Words_in_Q
	 1:	If Num_Words_in_Q > K then
	 2:		 State = CS; Check next queue;
	 3:	else If Num_Words_in_Q < X and (State = = CS|LCS) then
	 4:		 State = LCS; X = X/2;
	 5:		 If X < 4 then State = US;
	 6:		 end If
	 7:		 Dequeue all Ack packets;
	 8:	end If

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on April 25,2021 at 02:03:38 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2020236

Flow Completion Time: To observe the impact
of ABQ on FCT in congestion environments, this
subsection conducts two types of incasts. One is
with a varying number of senders and fixed flow
size (32 KB in Fig. 5a), the other is with varying
flow sizes and a fixed number of senders (30
senders in Fig. 5b). We plot the 1st, 50th and
99th percentile FCTs of three congestion mech-
anisms in Fig. 5.

As shown in Fig. 5a, with the growing number
of senders, all the 50th-percentile FCTs of three
mechanisms increase. ABQ’s 99th percentile FCTs
hold low. Besides, ABQ’s 1st and 50th percen-
tile FCTs are not large. ABQ has 90 percent and
10 percent decrease on average in the 99th-per-
centile FCT over DropTail and ECN, respective-
ly. DropTail has 99th-percentile FCTs due to its
severe packet drops.

In Fig. 5b, both ABQ and ECN achieve 99th-per-
centile FCTs. From this observation, ABQ and
ECN are both effective in transporting long flows,
because both ABQ and ECN use ECN mechanism
to relieve congestion, leading to similar effects on
long flows. Although DropTail achieves 1st-percen-
tile FCTs, its 99th-percentile FCTs are still largely
due to drastic packet-drops, which is attributed to
its proactive congestion control.

Benchmark at Scale
To measure ABQ’s performance on typical DCNs,
we use NS3 to conduct an at-scale datacenter
network. We adopt fat-tree topology in which a
core switch node is used to connect all the Top
of Rack (ToR) switches. The servers under ToR
connect to ToR via 1-Gb/s links, and the ToRs
connect to the core switch via 1number-of-
servers-under-a-ToR Gb/s. The number of servers
under a ToR is 25 and the number of ToR is 40.
The switch configurations stay unchanged.

We randomly choose five receivers out of
1000 servers to receive data. Short flow sizes

comply with the Pareto distribution with mean 50
KB and shape 1.2. The arrival times of flows com-
ply with exponential distributions with means of
300 ms, 400 ms, 500 ms, 600 ms and 700 ms. Mean-
while, there are five random long-lived flows as
background traffic, each of which is 30 MB, occu-
pying 75 percent of the total traffic in the DCN.

The short flow FCTs are plotted in Fig. 5c,
where ABQ achieves small FCTs. DropTail has a
long tail of FCTs while ECN has comparable FCTs.
The figure shows that the ECN mechanism in ECN
and ABQ are effective to cope with short flows.

We record the information of long flow
throughput and packet drops in ToR switches
in Table 1. In Table 1, ABQ achieves the high
throughput of long flows while ECN has a mod-
erate performance for long flows. DropTail has a
bias to long flows which leads to lower through-
put.

In Table 1, ABQ drops fewer packets than the
other two mechanisms, which is the key factor for
its performance.

Limitations
ABQ is the first trial to enable switch input queue
to solve the congestion problem. Although our
results are encouraging, there are several limita-
tions to our work.

First, ABQ needs to change the design of the
switch. We implement ABQ in NetFPGA to prove
that it can be deployed on the hardware and the
cost is low. This article intends to open the view
of congestion control in DCNs and provide initial
ideas to improve switch hardware.

Second, ABQ is based on symmetric traffic.
When there is non-symmetric traffic in DCNs,
ABQ may buffer the “wrong” Ack packets which
may not correspond to the data packets that
cause the congestion in the current switch. To
solve this problem, we can use the flow level
ECMP to make the flow stay symmetric.

FIGURE 4. Queue size and Goodput: a) the mean with the 5th and 95th percentile of queue size; b) good-
put; c) packet-drop times.

10 20 30 40 50 60 70 80 90 100
Number of concurrent senders

0

5

10

Q
ue

ue
 s

iz
e

(1
0

KB
)

DropTail ECN ABQ ABQ(Total)

10 30 50 70 90
Number of concurrent senders

0
2
4
6
8

10

G
oo

dp
ut

 (1
00

 M
bp

s) DropTail ECN ABQ

10 30 50 70 90
Number of concurrent senders

0

1

2

Pa
ck

et
-D

ro
ps

 (#
 o

f 1
02)

DropTail
ECN
ABQ

(a) (b) (c)

FIGURE 5. FCTs: a) The 1st, 50th, 99th percentile FCT with varying number of senders and 32 KB flows; b)
the 1st, 50th, 99th percentile FCT with varying flow sizes and 30 senders; c) the CDF of short flow FCTs
in at-scale DCN.

10 30 50 70 90
Number of concurrent senders

0

2

4

6

8

FC
T

(1
0

m
s)

DropTail
ECN
ABQ

0.5 1 2 4 6 8
Flow sizes (100 KB)

0

1

2

3

FC
T

(1
00

 m
s)

DropTail
ECN
ABQ

1 2 3
FCT (100 ms)

0

0.5

1

C
D

F
(%

)

DropTail
ECN
ABQ

(a) (b) (c)

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on April 25,2021 at 02:03:38 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2020 237

Conclusion
Active Buffer Queueing (ABQ) is a new Active
Queue Management (AQM) scheme for data-
center transport to solve the congestion problem.
It can relieve congestion by enabling a switch
to adjust the transmission rate. ABQ deploys an
input queue in a switch to buffer Ack packets
when the corresponding output queue is congest-
ed. This article initially measures the performance
of ABQ and implements an ABQ prototype on
NetFPGA. Our experiments show that, compared
with DropTail and ECN, ABQ can achieve the
highest Goodput with small queue size. ABQ can
cooperate with other AQMs whose feedback
mechanism is based on the switch output queue
at the same time.

Acknowledgment
This work is supported by the National Science
Foundation of China (61825204, 61932016,
61972039, 61602039); the National Key R&D
Program of China (2018YFB0803405); the Beijing
Outstanding Young Scientist Program (BJJWZY-
JH01201910003011); and the Beijing Municipal
Natural Science Foundation (4192050).

References
[1] L. Lv et al., “Communication-Aware Container Placement

and Reassignment in Large-Scale Internet Data Centers,”
IEEE JSAC, vol. 37, no. 3, 2019, pp. 540–55.

[2] Y. Zhang et al., “Going Fast and Fair: Latency Optimization
for Cloud-Based Service Chains,” IEEE Network, vol. 32, no.
2, 2017, pp. 138–43.

[3] S. Floyd and V. Jacobson, “Random Early Detection Gate-
ways for Congestion Avoidance,” IEEE/ACM Trans. Network-
ing, vol. 1, pp. 397–413.

[4] S. Athuraliya et al., “REM: Active Queue Management,” vol.
15, pp. 48–53.

[5] IEEE. 802.11qbb, Priority Based Flow Control, 2011.
[6] P. Cheng et al., “Catch the Whole Lot in an Action: Rapid

Precise Packet Loss Notification in Data Centers,” Proc.
NSDI, 2014.

[7] W. Bai et al., “Enabling ECN in Multiservice Multi-Queue
Data Centers,” Proc. 13th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 16, 2016.

[8] M. Alizadeh et al., “Data Center TCP (DCTCP),” Proc. SIG-
COMM 2010.

[9] Y. Zhu et al., “Congestion Control for Large-Scale RDMA
Deployments,” Proc. SIGCOMM, 2015.

[10] R. Mittal et al., “RTT-Based Congestion Control for the
Datacenter, Proc. SIGCOMM, 2015.

[11] I. Cho et al., “Credit-Scheduled Delay-Bounded Congestion
Control for Datacenters,” Proc. SIGCOMM, 2017.

[12] M. Handley et al., “Re-Architecting Datacenter Networks
and Stacks for Low Latency and High Performance,” Proc.
SIGCOMM, 2017.

[13] B. Montazeri et al., “A Receiver-Driven Low-Latency Trans-
port Protocol using Network Priorities,” Proc. SIGCOMM,
2018.

[14] V. Vasudevan et al., “Safe and Effective Fine-Grained TCP
Retransmissions for Datacenter Communication,” Proc. SIG-
COMM, 2009.

Biographies
Lei Xu received his bachelor degree in computer science from
Beijing Institute of Technology, China in 2006. He received his
Ph.D. from the Department of Computer Science & Technol-
ogy, Tsinghua University, Beijing, China in 2018. His research
interests include datacenter networking, router security and
block chain security. He is now working at ArxanChain CO.LTD
for block chain technologies.

Ke Xu received his Ph.D. from the Department of Computer Sci-
ence & Technology, Tsinghua University, Beijing, China, where
he serves as a full professor. He has published more than 100
technical papers and holds 20 patents in the research areas of
next generation Internet, P2P systems, Internet of Things (IoT),
and network virtualization and optimization. He is a member
of ACM and has guest-edited several special issues in IEEE and
Springer journals. He is a senior member of IEEE.

Tong Li received his B.S. degree from the Department of Com-
puter Science, Wuhan University, China in 2012, and his Ph.D.
degree from the Department of Computer Science & Technol-
ogy, Tsinghua University, Beijing, China in 2017. His research
interests include network protocols, measurement, and cloud/
edge computing.

Kai Zheng received the B.S. degree from Beijing University
of Posts and Telecommunications, China, in 2001, and Ph.D.
degrees from Tsinghua University, China, in 2006. He joined
Huawei Technologies in 2015 and is now Director & Chief
Architect of Distributed Communication. Before that, he was a
senior research staff member at IBM. His current research inter-
ests include datacenter networking, software defined (transport
layer) protocols, WAN optimizations, IoT protocols, and so on.
He is a senior member of IEEE.

Meng Shen received the B.Eng degree from Shandong Univer-
sity, Jinan, China in 2009, and the Ph.D. degree from Tsinghua
University, Beijing, China in 2014, both in computer science.
Currently he serves at the Beijing Institute of Technology, Bei-
jing, China, as an associate professor. His research interests
include privacy protection for cloud and IoT, blockchain appli-
cations, and encrypted traffic classification. He received the Best
Paper Runner-Up Award at IEEE IPCCC 2014. He is a member
of the IEEE.

Xiaojiang Du is a tenured professor in the Department of Com-
puter and Information Sciences at Temple University, Philadel-
phia, USA. He received his B.S. and M.S. degrees in electrical
engineering from Tsinghua University, Beijing, China in 1996
and 1998, respectively. He received his M.S. and Ph.D. degrees
in electrical engineering from the University of Maryland Col-
lege Park in 2002 and 2003, respectively. His research interests
are wireless communications, wireless networks, security, and
systems. He has authored over 300 journal and conference
papers in these areas, as well as a book published by Spring-
er. He has been awarded more than US$5 million in research
grants from the U.S. National Science Foundation (NSF), Army
Research Office, Air Force, NASA, the State of Pennsylvania,
and Amazon. He won the best paper award at IEEE GLOBE-
COM 2014 and the best poster runner-up award at the ACM
MobiHoc 2014. He serves on the editorial boards of three
international journals. He is a Senior Member of IEEE and a Life
Member of ACM.

Xinle Du received his bachelor degree in computer science from
Xidian University, Xi’an, China in 2018. He is working toward his
Ph.D. degree supervised by Prof. Ke Xu in the Department of
Computer Science & Technology, Tsinghua University, Beijing,
China. His research interests include datacenter networking.

TABLE 1. The throughput and packet drops in ToR switches in at-scale networks.

Value

DropTail ECN ABQ

Long Thrp.
(Mb/s)

ToR Drop
(#)

Long Thrp.
(Mb/s)

ToR Drop
(#)

Long Thrp.
(Mb/s)

ToR Drop
(#)

Smallest 653 673 743 420 818 258

Small 788 673 821 438 819 260

Median 789 750 829 449 823 270

Large 792 763 833 487 836 281

Largest 795 841 928 581 837 309

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on April 25,2021 at 02:03:38 UTC from IEEE Xplore. Restrictions apply.

